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PRE-TRAINED MACHINE LEARNING MODELS FOR REAL-TIME SPEECH FORM
CONVERSION
FIELD OF THE TECHNOLOGY
[0001] The present invention relates to the field of audio signal processing, in particular
to real-time speech form conversion with machine learning techniques.
BACKGROUND
[0002] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any of the approaches described in
this section qualify as prior art merely by virtue of their inclusion in this section.
[0003] The challenge in speech conversion is not only to be able to convert speech audio
from one form to another (e.g , accented speech to native speech) but also to do so in real-
time. In particular, the quest for efficient, high-quality accent conversion has long been an
area of interest within speech and audio processing. Accent conversion has significant
potential for various applications, notably in real-time audio communication. The challenge is
to design an audio processing algorithm that may transform a given input audio signal with
L2 (original speech format, e.g., English with accent speech) into L1 (desired speech format,
e.g., native English speech), maintaining the textual integrity and synchronicity, yet changing
the accentual characteristics. Although the accent conversion for the English language is used
as an example speech conversion task, the techniques described herein are equally applicable
to other speech conversion tasks such as voice conversion, emotion conversion, bandwidth
expansion, etc.
[0004] One approach to perform audio speech conversion may be to first convert the
original audio stream to text and then convert the text data to the desired form of the audio
speech stream. This approach may work for offline audio processing, but the real-time
conversion would require extensive computing resources and will present an additional
challenge of synchronization.
[0005] The synchronization challenge is particularly acute for real-time conversion.
When the audio stream is converted to a non-temporal format such as text, the temporal
information is lost, and thus, any conversion back to the audio format may not be
synchronized.
[0006] Thus, avoiding intermediate format generation, such as text, to preserve the
temporal aspects of the original audio stream is important to preserve the synchronization of
the output audio stream with the input audio stream.
-1-
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[0007] Even if an intermediate format is generated during the conversion, the
synchronicity has to be preserved between the input, the intermediate format data and the
output in the target format. This approach requires a large amount of synchronized speech
data in the original, intermediate and target formats. Without large amounts of such data, it is
impossible to train an accurate model for real-time recognition of phonemes. To address this
challenge, it would be extremely hard, if not impossible, to collect such data from live
recordings and much harder to synchronize such recordings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings of certain embodiments in which like reference numerals refer to
corresponding parts throughout the figures:

[0009] FIG. 1 is a block diagram that depicts a data flow for converting speech from an
original form to a target form, in an embodiment,;

[0010] FIG. 2 is a block diagram that depicts a process for transforming sampled speech
audio data into frames of spectral data, in an embodiment;

[0011] FIG. 3 is a block diagram that depicts example frames as generated from input
speech data, in an embodiment;

[0012] FIG. 4A and 4B are block diagrams that depict Speech ML System 150 in
production, in one or more embodiments;

[0013] FIG. 5 is a block diagram that depicts a process of training a Teacher Encoder
Algorithm, in an embodiment;

[0014] FIG. 6 is a block diagram that depicts the process of training a Teacher Decoder
ML Algorithm of Speech ML System 150, in an embodiment;

[0015] FIG. 7 is a block diagram that depicts a process of training the Student ML
Algorithm using the Teacher ML Model, in one or more embodiments;

[0016] FIG. 8 is a block diagram of a basic software system, in one or more
embodiments;

[0017] FIG. 9 is a block diagram that illustrates a computer system upon which an
embodiment of the invention may be implemented.

DETAILED DESCRIPTION

[0018] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, structures and devices are shown in block diagram form in order to

avoid unnecessarily obscuring the present invention.
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GENERAL OVERVIEW
[0019] Techniques described herein generate synchronized multi-form speech data for
training speech form conversion models and perform speech conversion from original form to
target form in real-time. The real-time aspect refers herein to performing a conversion of
form without having the full speech data but rather a portion thereof, thereby performing
conversion while the original speech audio stream is being received/acquired and generating
audio data in the target form of the speech without significant lag (e.g., 0.05 seconds to 0.3
seconds) as compared to the captured audio data in the original form.
[0020] In an embodiment, techniques include training a large-scale speech form
conversion machine learning (ML) model, the Teacher Model on offline speech data. The
Teacher ML Algorithm is trained with infinite lookahead of frame(s) of speech data, frames
that may temporally be subsequent to the input frame of the speech data. Stated differently,
the training for each input frame may be performed on complete speech data rather than on
speech data received in real-time.
[0021] Thus, in an implementation for each frame of speech data, the Teacher Model is
trained to generate the corresponding frame of speech data in the target form using not only
the current frame (and/or the previous frame(s)) of speech data but also the temporally
subsequent frame(s) of speech data (e.g., more than 5 seconds ahead) and up to the complete
frame set of the speech data itself. Additionally, the Teacher Model may contain a greater
number of layers and a larger dimension of layer(s) than the production model, referred to as
the Student Model. Thus, the Teacher Model is more accurate but cannot process speech
frames in real-time and, unlike the Student Model, may be too computationally resource-
consuming to execute in production on an end-user computing device.
[0022] In one embodiment, the Teacher Model may include an encoder machine-learning
model and a decoder machine-learning model. The term encoder ML model (or encoder)
refers to a machine-learning model that converts speech to a speech-agnostic form of content-
based data. A non-limiting example of content-based data includes text or phonetic
posteriorgram (PPG) or opaque content representation data. Non-limiting examples of
content representation data may include vectors derived from the output of layer(s) of an
encoder ML.
[0023] The term decoder ML model (or decoder) refers to a machine-learning model that
converts content-based speech data that is speech form agnostic to speech data in a target

speech form that may be played back or readily converted to be played back. For example,
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the decoder may be trained to generate Waveform Audio File Format (WAYV) data or spectral
speech data that can be transformed into WAV data.

[0024] In one embodiment, the encoder M. model may be trained separately from the
decoder. In such an embodiment, the encoder model may be trained using transcribed textual
data or phoneme data set of the input speech data as the target value set for the encoder
model. The target value set may be extracted using speech-to-text or speech-to-phoneme
techniques.

[0025] During the training of an encoder, speech data in the original form is fed into the
encoder ML algorithm to generate the predicted content data of the speech data. The
predicted content data is compared with the actual content of the speech data to determine the
loss function and to improve the accuracy of the encoder model by modifying the parameters
of the encoder during the training.

[0026] Additionally or alternatively, target speech form speech data may be provided as
input to the encoder ML algorithm during the training. Since the encoder ML algorithm
converts any form of speech data to form-independent encoded speech data, the trained
encoder ML model may accurately convert both original and target forms of speech data into
content-based data, thereby generating content-based vector sets.

[0027] The Teacher Model’s decoder is trained by providing as input to the decoder ML
algorithm the content-based data generated by the already trained encoder ML model. The
content-based data itself may be generated by providing speech data in its target form to the
encoder ML as input. The same speech data of the target form is the target speech data, which
is to be compared with the predicted speech data generated by the decoder ML algorithm to
determine the loss function.

[0028] Thus, in such an embodiment, the training of the Teacher Model may be
performed without parallel speech data. The term “parallel speech data” (or “parallel data™)
refers herein to streams of speech data of the same content but different speech forms and
having time synchronicity. Each frame of one speech form stream of parallel data has time
correspondence to the corresponding frame in the other speech form stream of the parallel
data of the same content.

[0029] To avoid the use of parallel data, the training of the encoder ML algorithm of the
Teacher Model takes as input either the target or original form speech data to train the
encoder to generate speech-form agnostic content-based data as the target output. Thereby,
the training of the encoder algorithm requires only correspondence of speech data of any

form with its content. And the decoder ML algorithm may be trained only using target-form
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speech data. Accordingly, the techniques for training the Teacher Model may use target-form
or original-form speech data independently of one another.

[0030] Because of the availability of both the target-form and original-form speech data
in vast amounts, the training of the teacher model may be performed with large amounts of
such data without the need for the target and original-form speech data to be synchronous
(parallel data).

[0031] The Teacher Model’s Encoder, having a large size (e.g., greater number of layers
and/or dimensions of the layers than the Student Model), generates accurate speech-agnostic
data for any form of speech data. For the same reason, the Teacher Model Decoder Model,
also having a greater number of parameters, once trained, is very accurate.

[0032] Therefore, in an embodiment, the trained Teacher Model generates sets of
accurate parallel data. Original-form speech data is provided as input to the Teacher Model,
and the Teacher Model generates the corresponding temporally synched target-form speech
data. The generated parallel data is of the same content and is time-synched between the
original form and the target form. Accordingly, the Teacher Model may generate an
unlimited amount of parallel data, given the availability of speech data in the original form.
[0033] In an embodiment, the generated parallel data is used to train a lightweight and
real-time Student Model. The ML algorithm of the Student Model may differ from the ML
algorithm of the Teacher Model by having a lesser number and/or smaller size of layers, a
lower order of execution, and a lesser number of parameters and features. Accordingly,
having less of one or more of the mentioned entities in the ML algorithm of the Student
Model makes the trained Student Model much faster to process speech data and generate the
corresponding target-form speech data with lesser lag.

[0034] Moreover, the Student Model is a real-time processing ML algorithm. The Student
ML algorithm uses frames of speech data that are temporally prior to the input frame of the
speech data for training. Consequently, the Student Model, unlike the Teacher Model, is a
real-time model that contemporaneously processes input speech data stream, each input frame
processing relying on the frames that are temporally within the allowable lag for the real-time
processing.

[0035] Additionally or alternatively, the Student Model may depend on the Teacher
Model during the training. In an embodiment, one or more properties may be extracted from
the trained larger ML model, such as the Teacher Model, and used for the training of the
Student Algorithm. For example, one or more of the layers in the Teacher Model retains at

least a portion of the information on how to accurately convert the original speech form data
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into the target speech form data. In such an embodiment, the Student Model is generated to
be based at least in part on one or more layers of the Teacher Model. For example, during the
training of the Student Model, additional constraints are imposed on one or more layers of the
Student Model to track (have the acceptable threshold of difference) with the one or more
layers of the Teacher Model. Stated differently, the loss function for the training of the
Student Model includes the similarity of layers (e.g., the vectors thereof) with the same
corresponding layer in the trained Teacher Model. Thus, a layer (and the parameters thereof)
in the Student Model may be trained to be within the acceptable error margin of the
corresponding layer (and the parameters thereof) in the Teacher Model.

DATA FLOW OVERVIEW
[0036] FIG. 1 is a block diagram that depicts a data flow for converting speech from an
original form to a target form, in an embodiment. At Speech Signal Acquisition block 110,
Speech Signal 100 is acquired in real-time by sampling the signal at a predetermined
sampling frequency. For example, a non-native speech may be acquired as Speech Signal 100
by a microphone of a recording device, and, in response, Speech ML System 150 generates
speech with the same content in the target form. Additionally, Speech Signal 100 may be in
the target form for one or more embodiments of training ML algorithms of Speech ML
System 150.
[0037] In an embodiment, Speech Signal Acquisition block 110 acquires and samples a
portion of Speech Signal 100 to produce Sampled Speech Data 120. The duration portion
may be pre-configured to be at least the minimum duration that is necessary to acquire
enough speech samples for capturing the frequency spectrum of a speech audio signal. A
non-limiting example may be a portion of 256 samples of Speech Signal 100 acquired at the
44.1 KHz sampling/frequency, yielding 0.0058 seconds for each portion duration. Each
generated portion of Speech Signal Acquisition block 110 may contain a sequence of
amplitude values for the acquired Speech Signal 100 as part of Sampled Speech Data 120.
[0038] Alternatively, Sampled Speech Data 120 may be obtained from a pre-acquired and
stored audio file. A non-limiting example may be a WAYV file that contains Sampled Speech
Data 120 in the original form (e.g., non-native accented speech) or the target form (e.g.,
native speech).
[0039] At Frequency Domain Conversion block 130, the process performs frequency
domain transformation of Sampled Speech Data 120, thereby generating Spectral Frame Data
140. The transformation converts the sequence of sampled audio data of a frame in the time

domain to frequency component values in the frequency domain, yielding Spectral Frame
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Data 140. Frequency Domain Conversion block 130 may use a Short-Time Fourier
Transform (STFT) algorithm to generate a time-frequency transformation of non-stationary
signals. However, the exact frequency conversion methodology is not material to the
techniques described herein.

[0040] FIG. 2 is a block diagram that depicts a process for transforming sampled speech
audio data into frames of spectral data, in an embodiment. At step 210, the process obtains a
portion of speech audio samples. Sampled Speech Data 120 may be an audio stream, portions
of which are processed sequentially by the process.

[0041] At step 220, the process applies a window function (e.g., a Hanning, Hamming,
Vorbis, Gaussian, or other windowing techniques) of finite length. The length of the window
is also called the frame length. In an embodiment, the frame length is fixed to the same length
for speech data being processed by the ML models of Speech ML System 150 (e.g., 20ms to
80ms audio portion).

[0042] FIG. 3 is a block diagram that depicts example frames as generated from input
speech data, in an embodiment. Frame 301 is a sample frame that contains one hundred
speech data samples from Sample T1 to Sample T100. Each sample frame includes an
amplitude value or the window function application result on the amplitude value of the
Speech Signal 100.

[0043] For example, the window function may be a discrete function (e.g., a vector) of a
given amount of samples. The window function is applied by taking a portion of the audio
stream with the number of samples equal to the frame length. Each of these samples is then
multiplied by the corresponding value of the window function, resulting in a windowed
frame.

[0044] At step 230, the process converts the speech audio signal from the time domain to
the speech audio signal to its spectral data in the frequency domain. For example, the process
may perform the Discrete Fourier Transform (DFT) on the windowed frame.

[0045] Additional steps may be performed, such as calculating the magnitudes or squares
of magnitudes of Fourier coefficients, applying band compression techniques, and/or
transforming the scale of the frequency coefficients (calculating the logarithms of the output).
As a result, the process generates temporally arranged spectral features of the audio stream.
Non-limiting examples of such features are log power spectrum (LPS), mel spectrogram, mel
frequency cepstral coefficients (MFCC), etc.

[0046] At step 260, the temporally arranged sequence of frames of generated spectral

features may be provided to Speech ML System 150 for generating the corresponding frame
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of the output speech signal in the target form. Additionally or alternatively, the frame of
spectral feature speech data may be provided for training one or more ML algorithms to
generate the corresponding ML models of Speech ML System 150.
[0047] At step 240, the process selects the next frame in the received portion(s) of the
speech samples. The frames may overlap depending on the starting point selected for the next
frame. The amount (number of audio samples) by which the window for framing is moved.
The amount of audio samples moved for the next windowing of a frame is referred to as the
hop size or hop length. Accordingly, when the hop size is less than the frame length then
windowed frames may overlap.
[0048] Continuing with FIG. 3 example, the next frame, Frame 302, is selected using a
hop size of 70 samples. Thus, Samples T71 through T100 overlap in Frame 301 and Frame
302. When selecting, at step 240, the next frame includes a portion that has not yet been
received by the process; at step 250, the process may proceed to step 210 to select the next
portion.
[0049] In an embodiment, when all portions of speech data are received by the process
and the above-mentioned techniques performed on the speech data, the process, at step 260,
provides a 2D time-frequency representation of the signal where one axis represents time
when arranged in time sequence of the corresponding frames (derived from the window
positions), and the other represents frequency magnitude.

PRODUCTION SPEECH MACHINE LEARNING SYSTEM
[0050] FIG. 4A and 4B are block diagrams that depict Speech ML System 150, in one or
more embodiments. Speech ML System 150, when in production, includes one or more
already trained models, collectively referenced as Production Student Model 405/407. Speech
ML System 150 may process each frame of Spectral Frame Data 140 in real-time as the
speech is acquired by Speech Signal Acquisition block 110 and transformed to corresponding
one or more frames of Speech Spectral Frame Data 140. Production Student Model 405/407
may have access to temporally previous frames of the received frame but very few, if not
none of the frames that are temporally subsequent to the received frame. At most, Production
Student Model 405 may have access to as many frames subsequent to the current frame being
processed that will not cause a significant delay/lag in generating the corresponding frame of
Predicted Speech Data 160 in the target speech form. For example, the number of subsequent
frames should not exceed the accepted lag for real-time processing of Production Speech ML

System 150 (e.g., 0.05 seconds to 0.3 seconds duration).
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[0051] In FIG. 4A, Production Student Model 405 includes Student Encoder Model 410
and Student Decoder Model 450, in an embodiment. In such an embodiment, Student
Encoder Model 410 is a neural network ML model having Neural Network (NN) Layers
411 _1through 411 N. NN Layers 411 1 through 411 N are trained (configured) to process
each frame of Spectral Frame Data 140 to yield the corresponding frame of content-based
data such as Content Vector Set 480.
[0052] Student Decoder Model 450 takes as input a content-based vector and produces
back a new frame of speech corresponding to the original frame but in a target speech form
that is different from the original speech form of Spectral Frame Data 140. NN Layers 431 1
through 431 N may be trained (configured) to reproduce the content-based vector in different
speech forms. Non-limiting examples of target speech forms of Predicted Speech Data 160
are a native form of speech and/or noiseless form of speech from an accented form of speech
and/or noisy form of speech of Spectral Frame Data 140, respectively. Predicted Speech Data
160 may be reproduced by an audio device.
[0053] FIG. 4B is another embodiment of Speech ML System 150, having Production
Student Model 407. In this embodiment, Production Student Model 407 has a single ML
model having NN Layers 407 1 through 407 N. The difference between a single ML real-
time student model and multiple ML real-time student models is that in the multiple ML
models, the models may be trained separately and may be more accurate for the specific task
of each model. While in the single ML model, all the layers are trained together.
[0054] Since Production Student Model 405/407 is executed in a constraint computing
resource environment (e.g., on-site server, a personal computer, or a smartphone), Production
Student Model 405/407 has to be as compact as possible yet accurate and fast in processing
(minimal lag between the frame acquired and the frame produced.

TEACHER TRAINING
[0055] In an embodiment, to make Production Student Model 405/407 accurate, yet
without adding a significant processing lag, one or more Teacher Models are trained, and the
training knowledge may be “transferred” to the Production Student Model 405/407. Since the
Teacher Model is trained offline, no computing resource constraint exists. Thus, the Teacher
Model may have more NN layers, and each layer may have much larger dimensions (have
more parameters) than the Production Student Model 405/407. For example, the Teacher
Model may have more than 100 million parameters.
[0056] Additionally, the Teacher Model is trained with infinite lookahead of speech data
that is not available to the real-time Student Model. For example, the Student Model, being
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executed in real-time with the acquisition of the speech signal, cannot take into account the
speech frames that are temporally significantly ahead of the current frame because such
processing introduces at least as much lag as the number of future frames. On the other hand,
the Teacher Model, being executed offline, can use pre-recorded speech data and may look
ahead as much as necessary, if not completely, till the end of the speech data itself.
[0057] Another advantage of using the Teacher Model is the production of parallel data
of original form speech and target form speech by the trained Teacher Model. Teacher Model
having more layers with more parameters and trained with higher quality data may produce a
very accurate transformation of the speech form. More importantly, the transformation
produced is in complete temporal synch with the original form of the speech. Such generated
parallel data may be used in the training of Production Student Model 405/407 to make it
more accurate.
[0058] In an embodiment, the Teacher Model processes temporally sequential frames,
e.g., spectral features of input speech, and includes recurrent neural network block(s). The
Teacher Model transforms the input and finds patterns in the data structure, not just along the
frequency dimension but also temporally, among the frames because of the Teacher Model’s
ability to look ahead into the subsequent frame(s) and look back into the previous frame(s).
[0059] In an embodiment, the Teacher Model may include various neural network
block(s) such as Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM)
block(s). Multihead attention-based block(s), such as a conformer block, may also be used.
For the Teacher model to generate the output for the current input audio frame, the
information from the previous and future frames may be used (bidirectional processing).
TEACHER ENCODER TRAINING
[0060] In an embodiment, Teacher ML Algorithm of Speech ML System 150 includes
Teacher ML Encoder Algorithm and Teacher ML Decoder Algorithm to be trained separately
to generate corresponding Teacher ML Encoder Model and Teacher ML Decoder Model.
[0061] In an embodiment, the Teacher Encoder Algorithm is trained to generate content-
based data that contains information on the content of the input audio signal. The training
dataset for this model comprises a large collection of original and target forms of speech data.
For example, a large number of accented and native US English speech audio samples, along
with their corresponding textual content transcriptions.
[0062] FIG. 5 is a block diagram that depicts a process of training a Teacher Encoder
Algorithm, in an embodiment. Speech ML System 150 may be configured to train Teacher
Encoder ML Algorithm 510. Teacher Encoder ML Algorithm 510 may be trained to extract
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the content of speech data from both the original speech form and the target speech form, or
both, whichever is used as input to the training.

[0063] For example, when applying a US phoneme/text prediction task to the encoder
network of Teacher Encoder ML Algorithm 510, the model of Teacher Encoder ML
Algorithm 510 implicitly learns to encode the phonetic structure of US native speech.
Similarly, when provided with the accented form, the encoder model learns how to recognize
and encode the phonetic structure of the accented speech.

[0064] In an embodiment, the training is performed by providing to Teacher Encoder MLL
Algorithm 510 with Original or Target Speech Spectral Frame Data 520 and the
corresponding transcription content data as the training data set. During the training, Teacher
Encoder ML Algorithm 510 generates Predicted Teacher Content-based Data 580. For
example, Teacher Encoder ML Algorithm 510 is trained with speech-to-text or phoneme
recognition tasks or even self-supervised learning on audio speech data or any other audio
pattern recognition task.

[0065] In the training, each frame of Predicted Teacher Content-based Data 580 is
compared with the corresponding frame portion of Teacher Target Content Data through the
application of Loss Function 530. A non-limiting example of a loss function is a
Connectionist Temporal Classification (CTC) loss calculation, which accurately calculates
probabilities of a match even in a temporally misaligned comparison of predicted and target
data.

[0066] Using the same techniques, Teacher Encoder ML Algorithm 510 is trained to
detect content (e.g., text or PPG) even when the input is noisy, in an embodiment. Original or
Target Speech Spectral Frame Data 520 is augmented with noise and provided to the Teacher
Encoder ML Algorithm to generate the content of Spectral Frame Data 520. Thus, when the
Teacher Encoder ML Algorithm is trained, the ML model thereof may generate accurate
content even if the input is noisy speech data.

[0067] Once the ML model of Teacher Encoder ML Algorithm 510 is generated by the
training, the process selects at least one of the hidden layers of the ML model (e.g., the last
hidden layer) as the layer for generating Predicted Content Vector Set 582. The encoder ML
model returns audio frame-level Predicted Content Vector Set 582 for encoded content
information based on the output vector(s) of the selected layer(s) for each input frame. The
generated speech based on Predicted Content Vector Set 582 closely approximates the target
form of speech, such as the US native speech form, exhibiting significantly fewer phonetic

errors compared to the input accented speech.
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TEACHER DECODER TRAINING
[0068] A Teacher ML Decoder Model may convert the content-based data frames
generated by the Teacher ML. Encoder Model back into speech data but in the target speech
form. In an embodiment, the Teacher ML Decoder Algorithm is trained to receive as an input
a sequence set of content-based vectors and generate speech data in the target form.
[0069] FIG. 6 is a block diagram that depicts the process of training a Teacher Decoder
ML Algorithm of Speech ML System 150, in an embodiment. To generate a training data set
for training Teacher ML Decoder Algorithm 650, previously trained Teacher Encoder ML
Model 610 is provided with Input Target Speech Data 640. Based on the provided Input
Target Speech Data 640, Teacher Encoder ML Model 610 generates form-agnostic content-
based data describing the content of Input Target Speech Data, Predicted Content-based
Vector Set 680.
[0070] Based on providing Predicted Content-based Vector Set 680 as input in the
training, Teacher Decoder ML Algorithm 650 learns to generate back the original input
speech data in the same target form as Input Target Speech Data 640. Thereby, Predicted
Target Speech Data 660 is generated by Teacher Decoder ML Algorithm 650. Accordingly,
Teacher Decoder ML Algorithm 650 attempts to generate the speech data in the target form
with the same content as the input to Teacher Encoder ML Model 610.
[0071] Comparing Predicted Target Speech Data 660 with Input Target Speech Data 640
by Loss Function 630 may yield an error for the training of Teacher Decoder ML Algorithm
650. The output of Loss Function 630 is used to adjust the parameters of Teacher Decoder
ML Algorithm 650 to generate more accurate predicted speech data in the next round until
the error is within an acceptable margin.
[0072] Because Teacher Decoder ML Algorithm 650 is trained to generate speech data in
the target speech form, Input Target Speech Data 640 is also provided in the target form.
Each frame of Input Target Speech Data 640 in the target form generates form-agnostic frame
data for Predicted Content Vector Set 680. In an embodiment, Input Target Speech Data 640
before being provided to Teacher Model 615 may be converted to spectral frame data (not
depicted in FIG. 6). Nevertheless, the frame data of Predicted Target Speech Data 660
generated by Teacher Decoder ML Algorithm 650 during the training is compared for Loss
Function 630 such as combination of Least Square Error or Least Absolute Error for
predicted and target speech data spectral features and Generative Adversarial Network

(GAN) training losses. And Teacher Decoder ML Algorithm 650 is adjusted accordingly.
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GENERATING PARALLEL DATA
[0073] When the Teacher ML Algorithm is trained using large data sets, the generated
Teacher ML Model is highly accurate in converting the input original form of speech data to
the corresponding output target form of speech data. Accordingly, the original form of input
Spectral Speech Data may be provided as an input sequence of frames of spectral data in the
original speech form (which itself was generated from the corresponding sequence of frames
of speech data in the original form) to generate the corresponding sequence of frames of
speech data in the target form, in an embodiment. Thereby, because of the frame
correspondence between input and output, the Teacher ML. Model generates temporally
synched parallel data that may include one or more input speech data, input speech spectral
data, a form-agnostic content-based vector set, and output speech data.
[0074] For example, accented (and/or noisy) speech is processed by the Teacher Encoder
ML Model on a frame-by-frame basis, which generates the corresponding sequence set of
content-based vectors that are speech form agnostic. The generated sequence set of content-
based vectors is temporally synched with input speech in the original form (both in the
spectral as well as the original representation) and, thus, may be used as parallel data for the
Student Model training.
[0075] Additionally, in such an example, the Teacher Decoder ML Model takes the
sequence set of content-based vectors as input and generates the corresponding frames of US
native speech data. Since the processing of speech audio again occurs on the frame-by-frame
level, the input and generated speech waveforms are time-synchronized, ensuring temporal
alignment. By combining the input and generated output speech waveforms, parallel data of
input (spectral) speech data in the original and output speech data in the target form is
obtained.
[0076] In another embodiment, Teacher ML Model 615 may include a vocoder ML
model in addition to a decoder ML Model. In such an embodiment, the decoder ML model is
trained to generate frame-level spectral speech data of the target form. The additional ML
model, the vocoder ML model, is trained to generate speech-framed data in the target form
from the spectral-framed data obtained from the decoder, thereby reconstructing the final
waveform of the target speech signal. Since the additional model still produces speech data
that is framed synched with the inputs to the Teacher Encoder ML Model and the Teacher
Decoder ML Model, the Teacher ML Model of this embodiment may still produce similar
parallel data for Student ML Algorithm training.
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[0077] Alternatively, parallel data may be used to train a Teacher Model. In such an
embodiment, the Teacher ML Algorithm may also have a single neural network architecture,
a single ML. model, which takes as input the spectral feature sequence of the original form
speech (e.g., accented speech) and generates an approximate target form speech signal (e.g.,
accent-converted speech signal). In such an embodiment, to train the single model parallel
speech data is requested as input for training. The parallel speech data includes frame-level
aligned speech data in the original form and in the target form (e.g., accented and US-native
English speech audio signals). Such an alignment may be achieved, for example, using a
dynamic time warping (DTW) algorithm applied on the accented and target speech signal
feature sequences, other methods for parallel data generation also may be applied.
TRAINING STUDENT ML ALGORITHM
[0078] The large-scale trained Teacher ML Model serves as a resource for more accurate
and faster training of the Student ML Algorithm. In an embodiment, the Teacher ML Model
may generate parallel data as described above as a comprehensive temporally synched
training data set for the Student ML Algorithm.
[0079] Additionally or alternatively, the same or different Teacher ML Model may
provide the trained NN layers to the Student ML Algorithm during training. The Student ML
Algorithm may use the NN layer parameters of the Teacher ML Model to compare with the
corresponding parameters of its NN layer(s).
[0080] In an embodiment, the comparison may be performed as part of the loss function
for the training of the Student ML Algorithm to ensure that the corresponding layers (and the
parameters thereof) of the Student ML Algorithm track the same layers (and the parameters
thereof) of the Teacher ML Model. In such an embodiment, the Teacher ML Algorithm may
use the same dimension NN Layers as the Student ML Algorithm. If the dimensions sizes are
different, a layer size scaling function may be applied to the vector of NN Layer parameters
of the Teacher ML Model to match that of the Student ML Algorithm.
[0081] FIG. 7 is a block diagram that depicts a process of training the Student ML
Algorithm using the Teacher ML Model, in one or more embodiments. As discussed above,
once the Teacher ML Algorithm is trained, Teacher ML Model 715 may generate parallel
data for training Student ML Algorithm 705. The Encoder Model of Teacher ML Model 715
may generate Parallel Data 760 (frame-by-frame synchronized) of input Original (Spectral)
Speech Data 720 in the original speech form and the corresponding sequence of content-
based (form-agnostic) vector set (part of Parallel Data 760). Such Parallel Data 760 may be
used to train Student Teacher ML Encoder Algorithm 705 with Loss Function 730 applied on
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comparison of the predicted sequence of content-based vectors with the corresponding
sequence of content-based vectors from Parallel Data 760.
[0082] Parallel Data 760 may include a training set of Original Speech Data in the
original form (e.g., accented and/or noisy) and the corresponding frame-by-frame sequence of
a content-based vector set.
[0083] Additionally or alternatively, parameter(s) of one or more layers of NN Layers
711 1to 711 N from the Encoder Model of Teacher ML Model 715 may be compared with
corresponding parameters of NN Layers 701 _1to 701 N of the Encoder Algorithm of
Student ML Algorithm 705 as part of applying Loss Function 730. Therefore, training the
Encoder Model of Student ML Algorithm 705 ensures that the parameters for these layer(s)
closely track (within the margin of error set for Loss Function 730) the values for the
corresponding parameters of the corresponding layers the Encoder Model of Teacher ML
Model 715.
[0084] Similar techniques may be used for the training of the Decoder Algorithm of
Student ML Algorithm 705. The Decoder Model of Teacher ML Model 715 may generate
Parallel Data 760 (frame-by-frame synchronized) of input Original (Spectral) Speech Data
720 and the corresponding output (spectral) speech data (part of Parallel Data 760). Such
Parallel Data 760 may be used to train the Decoder Algorithm of Student Teacher ML
Decoder Algorithm 705 with Loss Function 730 applied on comparison of the predicted
sequence of output (spectral) speech data with the corresponding sequence of Parallel Data
760.
[0085] Additionally or alternatively, parameter(s) of one or more layers of NN Layers
711 1to 711 N from the Decoder Model of Teacher ML Model 715 may be compared with
corresponding parameters of NN Layers 701 _1to 701 _N of the Decoder Algorithm of
Student ML Algorithm 705 as part of applying Loss Function 730. Accordingly, the training
of the Decoder Algorithm of Student ML Algorithm 705 ensures that the parameters for these
layer(s) closely track (within the margin of error set for Loss Function 730) the values for the
corresponding parameters of the corresponding layers of the Decoder Model of the Teacher
ML Model 715.

FURTHER DETAILS ON TRAINING MACHINE LEARNING MODEL
[0086] Machine learning techniques include applying a machine learning algorithm on a
training data set, for which outcome(s) are known, with initialized parameters whose values
are modified in each training iteration to more accurately yield the known outcome(s)

(referred herein as “label(s)”). Based on such application(s), the techniques generate a
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machine-learning model with known parameters. Thus, a machine learning model includes a
model data representation or model artifact. A model artifact comprises parameter values,
which are applied by a machine learning algorithm to the input to generate a predicted output.
Training a machine learning model entails determining the parameter values of the model
artifact. The structure and organization of the parameter values depend on the machine
learning algorithm.

[0087] Accordingly, the term “machine learning algorithm” (or simply “algorithm”)
refers herein to a process or set of rules to be followed in calculations in which a model
artifact, comprising one or more parameters for the calculations, is unknown. The term
“machine learning model” (or simply “model”) refers herein to the process or set of rules to
be followed in the calculations in which the model artifact, comprising one or more
parameters, is known and has been derived based on the training of the respective machine
learning algorithm using one or more training data sets. Once trained, the input is applied to
the machine learning model to make a prediction, which may also be referred to herein as a
predicted outcome or output.

[0088] In supervised training, training data is used by a supervised training algorithm to
train a machine learning model. The training data includes input and “known” output, label.
In an implementation, the supervised training algorithm is an iterative procedure. In each
iteration, the machine learning algorithm applies the model artifact and the input to generate a
predicted output. An error or variance between the predicted output and the known output is
calculated using an objective function, loss function. In effect, the output of the loss function
indicates the accuracy of the machine learning model based on the particular state of the
model artifact in the iteration. By applying an optimization algorithm based on the loss
function, the parameter values of the model artifact are adjusted. The iterations may be
repeated until the desired accuracy is achieved or some other criteria are met.

[0089] In an implementation, to iteratively train an algorithm to generate a trained model,
a training data set may be arranged such that each row of the data set is input to a machine
learning algorithm and further stores the corresponding actual outcome, label value, for the
row. For example, each row of the adult income data set represents a particular adult for
whom the outcome is known, such as whether the adult has a gross income over $500,000.
Each column of the adult training dataset contains numerical representations of a particular
adult characteristic (e.g., whether an adult has a college degree or the age of an adult) based
on which the algorithm, when trained, can accurately predict whether any adult (even one

who has not been described by the training data set) has a gross income over $500,000.
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[0090] The row values of a training data set may be provided as inputs to a machine
learning algorithm and may be modified based on one or more parameters of the algorithm to
yield a predicted outcome. The predicted outcome for a row is compared with the label value,
and based on the difference, an error value is calculated. One or more error values for the
batch of rows are used in a statistical aggregate function to calculate an error value for the
batch. The “loss” term refers to an error value for a batch of rows.

[0091] At each training iteration, based on one or more predicted values, the
corresponding loss values for the iteration are calculated. For the next training iteration, one
or more parameters are modified to reduce the loss based on the current loss. Any number of
iterations on a training data set may be performed to reduce the loss. The training iterations
using a training data set may be stopped when the change in the losses between the iterations
is within a threshold. In other words, the iterations are stopped when the loss for different
iterations is substantially the same.

[0092] After the training iterations, the generated machine learning model includes the
machine learning algorithm with the model artifact that yielded the smallest loss.

[0093] For example, the above-mentioned adult income data set may be iterated using the
Support Vector Machines (SVM) algorithm to train an SVM-based model for the adult
income data set. Each row of the adult data set is provided as an input to the SVM algorithm,
and the result, the predicted outcome, of the SVM algorithm is compared to the actual
outcome for the row to determine the loss. Based on the loss, the parameters of the SMV are
modified. The next row is provided to the SVM algorithm with the modified parameters to
yield the next row’s predicted outcome. The process may be repeated until the difference in
loss values of the previous iteration and the current iteration is below a pre-defined threshold
or, in some implementations, until the difference between the smallest loss value achieved
and the current iteration’s loss is below a pre-defined threshold.

[0094] Once the machine learning model for the machine learning algorithm is
determined, a new data set for which an outcome is unknown may be used as input to the
model to calculate the predicted outcome(s) for the new data set.

[0095] In a software implementation, when a machine learning model is referred to as
receiving an input, executing, and/or generating output or prediction, a computer system
process executing a machine learning algorithm applies the model artifact against the input to
generate predicted output. A computer system process executes a machine learning algorithm

by executing software configured to cause the execution of the algorithm.
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FURTHER DETAILS ON MACHINE LEARNING ALGORITHMS AND DOMAINS
[0096] A machine learning algorithm may be selected based on the domain of the
problem and the intended type of outcome required by the problem. The non-limiting
examples of algorithm outcome types may be discrete values for problems in the
classification domain, continuous values for problems in the regression domain, or anomaly
detection problems in the clustering domain.

[0097] However, even for a particular domain, there are many algorithms to choose from
for selecting the most accurate algorithm to solve a given problem. As non-limiting
examples, in a classification domain, Support Vector Machines (SVM), Random Forests
(RF), Decision Trees (DT), Bayesian networks (BN), stochastic algorithms such as genetic
algorithms (GA), or connectionist topologies such as artificial neural networks (ANN) may
be used.

[0098] Implementations of machine learning may rely on matrices, symbolic models, and
hierarchical and/or associative data structures. Parameterized (i.e., configurable)
implementations of best-of-breed machine learning algorithms may be found in open-source
libraries such as Google’s TensorFlow for Python and C++ or Georgia Institute of
Technology’s MLPack for C++. Shogun is an open-source C++ ML library with adapters for
several programming languages, including C#, Ruby, Lua, Java, MatLab, R, and Python.

HYPER-PARAMETERS, CROSS-VALIDATION AND ALGORITHM SELECTION
[0099] A type of machine algorithm may have unlimited variants based on one or more
hyper-parameters. The term “hyper-parameter” refers to a parameter in a model artifact that is
set before the training of the machine algorithm model and is not modified during the training
of the model. In other words, a hyper-parameter is a constant value that affects (or controls)
the generated trained model independent of the training data set. A machine learning model
with a model artifact that has only hyper-parameter values set is referred to herein as a
“variant of a machine learning algorithm” or simply “variant.” Accordingly, different
hyperparameter values for the same type of machine learning algorithm may yield
significantly different loss values on the same training data set during the training of a model.
[0100] For example, the SVM machine learning algorithm includes two hyperparameters:
“C” and “gamma.” The “C” hyper-parameter may be set to any value from 107 to 10°, while
the “gamma” hyper-parameter may be set from 10~ to 10°. Accordingly, there are endless
permutations of the “C” and “gamma’” parameters that may yield different loss values for

training the same adult income training data set.
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[0101] Therefore, to select a type of algorithm or, moreover, to select the best-performing
variant of an algorithm, various hyper-parameter selection techniques are used to generate
distinct sets of hyper-parameter values. Non-limiting examples of hyper-parameter value
selection techniques include a Bayesian optimization such as a Gaussian process for hyper-
parameter value selection, a random search, a gradient-based search, a grid search, hand-
tuning techniques, a tree-structured Parzen Estimators (TPE) based technique.

[0102] With distinct sets of hyper-parameters values selected based on one or more of
these techniques, each machine learning algorithm variant is trained on a training data set. A
test data set is used as an input to the trained model for calculating the predicted result values.
The predicted result values are compared with the corresponding label values to determine
the performance score. The performance score may be computed based on calculating the
error rate of predicted results in relation to the corresponding labels. For example, in a
categorical domain, if out of 10,000 inputs to the model, only 9,000 matched the labels for
the inputs, then the performance score is computed to be 90%. In non-categorical domains,
the performance score may be further based on a statistical aggregation of the difference
between the label value and the predicted result value.

[0103] The term “trial” refers herein to the training of a machine learning algorithm using
a distinct set of hyper-parameter values and testing the machine learning algorithm using at
least one test data set. In an implementation, cross-validation techniques, such as k-fold
cross-validation, are used to create many pairs of training and test datasets from an original
training data set. Each pair of data sets together contains the original training data set, but the
pairs partition the original data set in different ways between a training data set and a test data
set. For each pair of data sets, the training data set is used to train a model based on the
selected set of hyperparameters, and the corresponding test data set is used for calculating the
predicted result values with the trained model. Based on inputting the test data set to the
trained machine learning model, the performance score for the pair (or fold) is calculated. If
there is more than one pair (i.e., fold), then the performance scores are statistically aggregated
(e.g., average, mean, min, max) to yield a final performance score for the variant of the
machine learning algorithm.

[0104] Each trial is computationally very expensive, as it includes multiple training
iterations for a variant of the machine algorithm to generate the performance score for one
distinct set of hyper-parameter values of the machine learning algorithm. Accordingly,
reducing the number of trials can dramatically reduce the necessary computational resources

(e.g., processor time and cycles) for tuning.
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[0105] Furthermore, since the performance scores are generated to select the most
accurate algorithm variant, the more precise the performing score itself is, the more precise
the generated model’s prediction relative accuracy is compared to other variants. Indeed,
once the machine learning algorithm and its hyper-parameter value-based variant are
selected, a machine model is trained by applying the algorithm variant to the full training data
set using the techniques discussed above. This generated machine-learning model is expected
to predict the outcome with more accuracy than the machine-learning models of any other
variant of the algorithm.
[0106] The precision of the performance score itself depends on how much
computational resources are spent on tuning hyper-parameters for an algorithm.
Computational resources can be wasted on testing sets of hyper-parameter values that cannot
yield the desired accuracy of the eventual model.
[0107] Similarly, less (or no) computational resources may be spent on tuning those
hyper-parameters for a type of algorithm that is most likely to be less accurate than another
type of algorithm. Accordingly, the number of trials may be reduced or eliminated for hyper-
parameters of discounted algorithms, thus substantially increasing the performance of the
computer system.

SOFTWARE OVERVIEW
[0108] FIG. 8 is a block diagram of a basic software system 800 that may be employed
for controlling the operation of computing system 900 of FIG. 9. Software system 800 and its
components, including their connections, relationships, and functions, are meant to be
exemplary only, and not meant to limit implementations of the example embodiment(s).
Other software systems suitable for implementing the example embodiment(s) may have
different components, including components with different connections, relationships, and
functions.
[0109] Software system 800 is provided for directing the operation of computing system
900. Software system 800, which may be stored in system memory (RAM) 906 and on fixed
storage (e.g., hard disk or flash memory) 910, includes a kernel or operating system (OS)
810.
[0110] The OS 810 manages low-level aspects of computer operation, including
managing execution of processes, memory allocation, file input and output (I/0), and device
I/0. One or more application programs represented as 802A, 802B, 802C ... 802N, may be
“loaded” (e.g., transferred from fixed storage 910 into memory 906) for execution by the

system 800. The applications or other software intended for use on computer system 900 may
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also be stored as a set of downloadable computer-executable instructions, for example, for
downloading and installation from an Internet location (e.g., a Web server, an app store, or
another online service).

[0111] Software system 800 includes a graphical user interface (GUI) 815, for receiving
user commands and data in a graphical (e.g., “point-and-click” or “touch gesture”) fashion.
These inputs, in turn, may be acted upon by the system 800 in accordance with instructions
from operating system 810 and/or application(s) 802. The GUI 815 also serves to display the
results of operation from the OS 810 and application(s) 802, whereupon the user may supply
additional inputs or terminate the session (e.g., log off).

[0112] OS 810 can execute directly on the bare hardware 820 (e.g., processor(s) 904) of
computer system 900. Alternatively, a hypervisor or virtual machine monitor (VMM) 830
may be interposed between the bare hardware 820 and the OS 810. In this configuration,
VMM 830 acts as a software “cushion” or virtualization layer between the OS 810 and the
bare hardware 820 of the computer system 900.

[0113] VMM 830 instantiates and runs one or more virtual machine instances (“guest
machines”). Each guest machine comprises a “guest” operating system, such as OS 810, and
one or more applications, such as application(s) 802, designed to execute on the guest
operating system. The VMM 830 presents the guest operating systems with a virtual
operating platform and manages the execution of the guest operating systems.

[0114] In some instances, the VMM 830 may allow a guest operating system to run as if
it is running on the bare hardware 820 of computer system 900 directly. In these instances,
the same version of the guest operating system configured to execute on the bare hardware
820 directly may also execute on VMM 830 without modification or reconfiguration. In other
words, VMM 830 may provide full hardware and CPU virtualization to a guest operating
system in some instances.

[0115] In other instances, a guest operating system may be specially designed or
configured to execute on VMM 830 for efficiency. In these instances, the guest operating
system is “aware” that it executes on a virtual machine monitor. In other words, VMM 830
may provide para-virtualization to a guest operating system in some instances.

[0116] A computer system process comprises an allotment of hardware processor time,
and an allotment of memory (physical and/or virtual), the allotment of memory being for
storing instructions executed by the hardware processor, for storing data generated by the
hardware processor executing the instructions, and/or for storing the hardware processor state

(e.g. content of registers) between allotments of the hardware processor time when the
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computer system process is not running. Computer system processes run under the control of
an operating system and may run under the control of other programs being executed on the
computer system.
[0117] Multiple threads may run within a process. Each thread also comprises an
allotment of hardware processing time but share access to the memory allotted to the process.
The memory is used to store the content of processors between the allotments when the
thread is not running. The term thread may also be used to refer to a computer system process
in multiple threads that are not running.

CLOUD COMPUTING
[0118] The term "cloud computing" is generally used herein to describe a computing
model which enables on-demand access to a shared pool of computing resources, such as
computer networks, servers, software applications, and services, and which allows for rapid
provisioning and release of resources with minimal management effort or service provider
interaction.
[0119] A cloud computing environment (sometimes referred to as a cloud environment,
or a cloud) can be implemented in a variety of different ways to best suit different
requirements. For example, in a public cloud environment, the underlying computing
infrastructure is owned by an organization that makes its cloud services available to other
organizations or to the general public. In contrast, a private cloud environment is generally
intended solely for use by or within a single organization. A community cloud is intended to
be shared by several organizations within a community; while a hybrid cloud comprises two
or more types of cloud (e.g., private, community, or public) that are bound together by data
and application portability.
[0120] Generally, a cloud computing model enables some of those responsibilities which
previously may have been provided by an organization's own information technology
department, to instead be delivered as service layers within a cloud environment, for use by
consumers (either within or external to the organization, according to the cloud's
public/private nature). Depending on the particular implementation, the precise definition of
components or features provided by or within each cloud service layer can vary, but common
examples include: Software as a Service (SaaS), in which consumers use software
applications that are running upon a cloud infrastructure, while a SaaS provider manages or
controls the underlying cloud infrastructure and applications. Platform as a Service (PaaS), in
which consumers can use software programming languages and development tools supported

by a PaaS provider to develop, deploy, and otherwise control their own applications, while
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the PaaS provider manages or controls other aspects of the cloud environment (i.e.,
everything below the run-time execution environment). Infrastructure as a Service (IaaS), in
which consumers can deploy and run arbitrary software applications, and/or provision
processing, storage, networks, and other fundamental computing resources, while an IaaS
provider manages or controls the underlying physical cloud infrastructure (i.e., everything
below the operating system layer).
[0121] The above-described basic computer hardware and software and cloud computing
environment presented for the purpose of illustrating the basic underlying computer
components that may be employed for implementing the example embodiment(s). The
example embodiment(s), however, are not necessarily limited to any particular computing
environment or computing device configuration. Instead, the example embodiment(s) may be
implemented in any type of system architecture or processing environment that one skilled in
the art, in light of this disclosure, would understand as capable of supporting the features and
functions of the example embodiment(s) presented herein.

HARDWARE OVERVIEW
[0122] According to one embodiment, the techniques described herein are implemented
by one or more special-purpose computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may include digital electronic devices such
as one or more application-specific integrated circuits (ASICs) or field-programmable gate
arrays (FPGAs) that are persistently programmed to perform the techniques, or may include
one or more general-purpose hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the techniques. The special-purpose
computing devices may be desktop computer systems, portable computer systems, handheld
devices, networking devices or any other device that incorporates hard-wired and/or program
logic to implement the techniques.
[0123] For example, FIG. 9 is a block diagram that illustrates a computer system 900
upon which an embodiment of the invention may be implemented. Computer system 900
includes a bus 902 or other communication mechanism for communicating information, and a
hardware processor 904 coupled with bus 902 for processing information. Hardware
processor 904 may be, for example, a general-purpose microprocessor.
[0124] Computer system 900 also includes a main memory 906, such as a random access

memory (RAM) or another dynamic storage device, coupled to bus 902 for storing
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information and instructions to be executed by processor 904. Main memory 906 also may be
used for storing temporary variables or other intermediate information during execution of
instructions to be executed by processor 904. Such instructions, when stored in non-transitory
storage media accessible to processor 904, render computer system 900 into a special-
purpose machine that is customized to perform the operations specified in the instructions.
[0125] Computer system 900 further includes a read-only memory (ROM) 908 or other
static storage device coupled to bus 902 for storing static information and instructions for
processor 904. A storage device 910, such as a magnetic disk or optical disk, is provided and
coupled to bus 902 for storing information and instructions.

[0126] Computer system 900 may be coupled via bus 902 to a display 912, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 914,
including alphanumeric and other keys, is coupled to bus 902 for communicating information
and command selections to processor 904. Another type of user input device is cursor control
916, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 904 and for controlling cursor movement
on display 912. This input device typically has two degrees of freedom in two axes, a first
axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
[0127] Computer system 900 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 900 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 900 in response to processor 904 executing one or more
sequences of one or more instructions contained in main memory 906. Such instructions may
be read into main memory 906 from another storage medium, such as storage device 910.
Execution of the sequences of instructions contained in main memory 906 causes processor
904 to perform the process steps described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions.

[0128] The term “storage media” as used herein refers to any non-transitory media that
store data and/or instructions that cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as storage device 910. Volatile media
includes dynamic memory, such as main memory 906. Common forms of storage media
include, for example, a floppy disk, a flexible disk, hard disk, solid-state drive, magnetic tape,

or any other magnetic data storage medium, a CD-ROM, any other optical data storage
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medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or cartridge.

[0129] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire, and fiber optics,
including the wires that comprise bus 902. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0130] Various forms of media may be involved in carrying one or more sequences of
one or more instructions to processor 904 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 900 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal, and
appropriate circuitry can place the data on bus 902. Bus 902 carries the data to main memory
906, from which processor 904 retrieves and executes the instructions. The instructions
received by main memory 906 may optionally be stored on storage device 910 either before
or after execution by processor 904.

[0131] Computer system 900 also includes a communication interface 918 coupled to bus
902. Communication interface 918 provides a two-way data communication coupling to a
network link 920 that is connected to a local network 922. For example, communication
interface 918 may be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 918 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 918 sends and receives electrical, electromagnetic, or optical signals that carry
digital data streams representing various types of information.

[0132]  Network link 920 typically provides data communication through one or more
networks to other data devices. For example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data equipment operated by an
Internet Service Provider (ISP) 926. ISP 926, in turn, provides data communication services

through the world wide packet data communication network now commonly referred to as
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the “Internet” 928. Local network 922 and Internet 928 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and
the signals on network link 920 and through communication interface 918, which carry the
digital data to and from computer system 900, are example forms of transmission media.
[0133] Computer system 900 can send messages and receive data, including program
code, through the network(s), network link 920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested code for an application program
through Internet 928, ISP 926, local network 922 and communication interface 918.
[0134] The received code may be executed by processor 904 as it is received, and/or
stored in storage device 910 or other non-volatile storage for later execution.

COMPUTING NODES AND CLUSTERS
[0135] A computing node is a combination of one or more hardware processors that each
share access to a byte-addressable memory. Each hardware processor is electronically
coupled to registers on the same chip of the hardware processor and is capable of executing
an instruction that references a memory address in the addressable memory, and that causes
the hardware processor to load data at that memory address into any of the registers. In
addition, a hardware processor may have access to its separate exclusive memory that is not
accessible to other processors. The one or more hardware processors may be running under
the control of the same operating system
[0136] A hardware processor may comprise multiple core processors on the same chip,
each core processor (“core”) being capable of separately executing a machine code
instruction within the same clock cycles as another of the multiple cores. Each core processor
may be electronically coupled to connect to a scratchpad memory that cannot be accessed by
any other core processor of the multiple core processors.
[0137] A cluster comprises computing nodes that each communicate with each other via a
network. Each node in a cluster may be coupled to a network card or a network-integrated
circuit on the same board of the computing node. Network communication between any two
nodes occurs via the network card or network integrated circuit on one of the nodes and a
network card or network integrated circuit of another of the nodes. The network may be
configured to support remote direct memory access.

ADDITIONAL IMPLEMENTATIONS

[0138] In the first additional implementation, a computer-implemented method includes:
based at least in part on input speech data of an original form, generating, by a machine

learning (ML) model, parallel speech data comprising the input speech data of the original
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form and temporally aligned output speech data of a target form different than the original
form; wherein the parallel speech data comprises a plurality of parallel speech frame tuples,
each parallel speech frame tuple of the plurality of parallel speech frame tuple comprising a
respective input speech frame of the original form of the input speech data and a
corresponding output speech frame of the target form of the output speech data; wherein the
respective input speech frame temporally corresponds to the corresponding output speech
frame of the target form and contains a same portion of the particular content.

[0139] In the second additional implementation related to the first additional
implementation, wherein the machine learning model is a teacher machine learning model,
the method further includes: training a student machine learning algorithm to generate a
student machine learning model by providing the parallel speech data generated by the
teacher machine learning model to the student machine learning algorithm; wherein the
student machine learning model and the teacher machine learning model are neural networks
having a plurality of processing layers; wherein the student machine learning model is
different from the teacher machine learning model by having a fewer number of layers or a
fewer number of parameters.

[0140] In the third additional implementation related to the first additional
implementation, wherein the machine learning model is a teacher machine learning model,
the method further includes: training a student machine learning algorithm to generate a
student machine learning model by providing the parallel speech data generated by the
teacher machine learning model to the student machine learning algorithm, at least by:
providing, to the student machine learning algorithm, the respective input speech frame of the
original form of said each parallel speech frame tuple of the plurality of parallel speech frame
tuples and a first set of input speech frames of the original form that are temporally before the
respective input speech frame to generate a predicted speech frame of the target form,
without providing at least one speech frame of the original form that is temporally after the
respective input speech frame; determining a loss function at least by comparing the
predicted speech frame with the corresponding output speech frame of the target form of the
plurality of parallel speech frame tuples; based, at least in part, on the loss function, adjusting
one or more parameters of the student machine learning algorithm.

[0141] In the fourth additional implementation related to the first additional
implementation, the original form is a non-native accented form of speech, and the target

form is a native accented form of speech.
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[0142] In the fifth additional implementation related to the first additional
implementation, the original form is a noisy form of speech and the target form is a noiseless
form of speech.

[0143] In the sixth additional implementation related to the first additional
implementation, the original form is a noisy non-native accented form of speech, and the
target form is a noiseless native accented form of speech.

[0144] In the seventh additional implementation related to the first additional
implementation, wherein the machine learning model comprises an encoder machine learning
model and a decoder machine learning model, the method further includes: generating, by the
encoder machine learning model, a content-based vector set of form-agnostic data having the
particular content at least by applying the encoder machine learning model on the input
speech data of the original form; applying the decoder machine learning model on the
content-based vector set, thereby generating the temporally aligned output speech data of the
target form.

[0145] In the eights additional implementation related to the first additional
implementation, wherein the machine learning model comprises an encoder machine learning
model and a decoder machine learning model, the method further includes: training a teacher
machine learning model to generate the teacher machine learning model at least by training a
decoder machine learning algorithm to generate the decoder machine learning model at least
by: applying the already trained encoder machine learning model on training speech data in
the target form to generate a training input content-based vector set of form-agnostic data;
providing the training input content-based vector set of form-agnostic data to the decoder
machine learning algorithm to generate predicted speech data in the target form.

[0146] In the ninth additional implementation related to the eighth additional
implementation, the method further includes: determining one or more loss functions of the
decoder machine learning algorithm by comparing the predicted speech data in the target
form with training speech data in the target form; based, at least in part, on the one or more
loss functions of the decoder machine learning algorithm, adjusting one or more parameters
of the decoder machine learning algorithm.

[0147] In the tenth additional implementation related to the first additional
implementation, wherein the machine learning model includes an encoder machine learning
model and a decoder machine learning model, the method further includes: training a teacher
machine learning model to generate the teacher machine learning model at least by training

an encoder machine learning algorithm to generate the decoder machine learning model at
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least by: providing training input speech data in the target form to the encoder machine
learning algorithm to generate a predicted content-based vector set of form-agnostic data.
[0148] In the eleventh additional implementation related to the tenth additional
implementation, the method further includes: determining one or more loss functions of the
encoder machine learning algorithm by comparing the predicted content-based vector set of
form-agnostic data with content-based data corresponding to the training input speech data in
the target form; based, at least in part, on the one or more loss functions of the encoder
machine learning algorithm, adjusting one or more parameters of the encoder machine
learning model.

[0149] In the twelfth additional implementation related to the tenth additional
implementation, the method further includes providing training input speech data in the
original form to the encoder machine learning algorithm to generate the predicted content-
based vector set of form-agnostic data.

[0150] In the thirteenth additional implementation related to the twelfth additional
implementation, the method further includes: determining one or more loss functions of the
encoder machine learning algorithm by comparing the predicted content-based vector set of
form-agnostic data with content-based data corresponding to the training input speech data in
the target form and to the training input speech data in the original form; based, at least in
part, on the one or more loss functions of the encoder machine learning algorithm, adjusting
one or more parameters of the encoder machine learning algorithm.

[0151] In the fourteenth additional implementation, one or more non-transitory storage
media storing instructions which, when executed by one or more hardware processors, cause
performance of the method recited in any of the above additional implementations.

[0152] In the fifteenth additional implementation, an apparatus that includes means for
performing the method recited in any of the above additional implementations.

[0153] In the sixteenth additional implementation, a system that includes a processor; and
[0154] a memory, coupled to the processor and comprising instructions stored thereon
which, when executed by the processor, cause the processor to perform the method recited in
any of the above additional implementations.

[0155] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the

invention, and what is intended by the applicants to be the scope of the invention, is the literal

-29-



WO 2025/024193 PCT/US2024/038305

and equivalent scope of the set of claims that issue from this application, in the specific form

in which such claims issue, including any subsequent correction.
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CLAIMS
What is claimed is:
1. A computer-implemented method comprising:
training a first machine learning algorithm to generate a first machine learning model,
at least by:
providing training input speech data in the original form to the first machine
learning model to generate a predicted speech-related data setin a
particular form;
based at least in part on the training input speech data, generating the predicted
speech-related data set in the particular form by the first machine
learning model;
determining one or more loss functions of the first machine learning model at
least by:

a) comparing the predicted speech-related data set in the particular
form with target speech-related data set in the particular form
corresponding to the training input speech data in the original
form, and

b) comparing a subset of a first plurality of parameters of the first
machine learning model with a corresponding subset of a
second plurality of parameters of the second machine learning
model;

wherein the second machine learning model is trained to generate speech-
related data set in the particular form from input speech data in the
original form;
based on the one or more loss functions, adjusting the first plurality of
parameters of the first machine learning algorithm that includes the
subset of the first plurality of parameters.
2. The method of Claim 1,
wherein the first machine learning model is an encoder machine learning model, and
wherein the particular form of the predicted speech-related data set is a content-based
vector set of form-agnostic data having a same content as the training input
speech data.
3. The method of Claim 1, wherein the first machine learning model is an encoder

machine learning model, and the method further comprising:
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providing real-time input speech data of the original form to the first machine learning
model, thereby, at least, generating real-time output speech-related data set in
the particular form;
wherein the particular form of the real-time output speech-related data is a content-
based vector set of form-agnostic data having a same content as the real-time
input speech data;
providing the real-time output speech-related data set in the particular form to a
decoder machine learning model, thereby, at least, generating real-time output
speech data in a target form.
4. The method of Claim 3, wherein the original form is a non-native accented form of
speech, and the target form is a native accented form of speech.
S. The method of Claim 3, wherein the original form is a noisy form of speech and the
target form is a noiseless form of speech.
6. The method of Claim 3, wherein the original form is a non-native accented form of
speech, and the particular form is a native accented form of speech.
7. The method of Claim 3, wherein the original form is a noisy form of speech and the
particular form is a noiseless form of speech.
8. The method of Claim 1,
wherein the first machine learning model and the second machine learning model are
neural networks having a first set of layers and a second set of layers,
respectively;
wherein the second set of layers includes one or more particular second layers having
the corresponding subset of the second plurality of parameters of the second
machine learning model;
wherein the one or more particular second layers corresponds to one or more
particular first layers that includes the subset of the first plurality of
parameters.
9. The method of Claim 8, wherein the second set of layers of the second machine
learning model has greater number of layers than the first set of layers of the first machine
learning model.
10. The method of Claim 8, wherein each layer of the one or more particular second
layers that corresponds to the one or more particular first layers includes a greater number of

parameters than corresponding each layer of the one or more particular first layers.
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11. The method of Claim 1, wherein the training input speech data is first training input
speech data, the predicted speech-related data set is the first predicted speech-related data set,
the method further comprising:
training a second machine learning algorithm to generate the second machine learning
model including the second plurality of parameters of the second machine
learning model, at least by:
providing second training input speech data in the original form to the second
machine learning model to generate a second predicted speech-related data set
in the particular form;
based at least in part on the second training input speech data, generating the second
predicted speech-related data set in the particular form by the second machine
learning model;
wherein the second training input speech data is larger than the first training input
speech data.
12. The method of Claim 1, wherein the training input speech data is first training input
speech data, the predicted speech-related data set is the first predicted speech-related data set,
the method further comprising;:
training a second machine learning algorithm to generate the second machine learning
model including the second plurality of parameters of the second machine
learning model, at least by:
providing second training input speech data in the original form to the second
machine learning model to generate a second predicted speech-related data set
in the particular form;
based at least in part on the second training input speech data, generating the second
predicted speech-related data set in the particular form by the second machine
learning model,
wherein the each frame of second predicted speech-related data set is based at least in
part, on a) a corresponding frame in the second training input speech data and
b) a plurality of frames that are temporally subsequent to the corresponding
frame in the second training input speech data.

13.  One or more non-transitory storage media storing instructions which, when

executed by one or more hardware processors, cause performance of the method recited

in any of Claims 1-12.
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14. An apparatus, comprising means for performing the method recited in any of
Claims 1-12.
15. A system, comprising:
a processor; and
a memory, coupled to the processor and comprising instructions stored thereon
which, when executed by the processor, cause the processor to perform the

method recited in any of Claims 1-12.
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